

SAE – Automation, s.r.o. Nová Dubnica
Interoperability for your devices and software applications

SAE – Automation, s.r.o.

OpcDbGateway – first steps first

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianská 19, 018 51 Nová Dubnica

OpcDbGateway – Hello World
1OpcDbGateway is a software application platform consisting of a configurator and a runtime
application. The configurator is used to create, debug and test created applications.

As in other development environments, we can try the first steps on the "Hello World" application.

Here's an analogy to creating and debugging a C ++ application:

#include <iostream>

int main()
{
 auto HW = "Hello World!\n";
 std::cout << HW;
}

Let's create a HV string variable containing "Hello World! \ N". Use the std :: cout << HV command to
send the contents of this variable to standard output. We translate the program and run the console
application.

For the creation and debugging of such a program we can use e.g. Visual Studio 2019 development

environment.

Figure 1 Creating, compiling and running "Hello World" in Visual Studio 2019

1 The functionality described in this article is the same as in the SAEAUT UNIVERSAL OPC Server, except for the
database and internal OPC client functionality.

http://www.saeautom.sk/
http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk
mailto:sae-automation@saeautom.sk
https://www.saeautom.sk/products/uniopcserver/
https://www.saeautom.sk/products/uniopcserver/

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

Now let's show you how to create and test a similar application in the OpcDbGateway configurator.

Running a previous application resulted in a constant string display in the console application. However,
the runtime OpcDbGateway application is not a console application, but a server application without a
user interface that provides data to client applications or stores them in databases and files.

In Visual Studio, we have a string in the Debug Console. As a replacement for such a console, we can use
the OpcDbGateway configuration application, which also functions as a client application that
communicates via the OPC DA interface with the OPC DA server of the runtime application. OPC DA
server runtime application provides access to so-called. process variables (PVs), which can contain
variables of different types, including strings.

In typical OpcDbGateway applications, data from external devices and applications communicating with
the runtime OpcDbGateway application are stored in the PVs. The PVs are stored in an array of
structures in the runtime application's memory (which include, in addition to value, also type,
timestamp, and quality) and made available through indexes of this array (Figure 2).

When creating a configuration, we need to provide an overview of the use of individual PVs in individual
parts of the application. For this purpose, named memory operands (MOs) are used that can be created
within tree directory structures in the configurator and mapped to individual PVs in the memory of a
runtime application. We use them to create an application data model.

For each MO, it is also possible to create an OPC variable in the address structure of the address space of
the internal OPC server with a single click. OPC variables created in this way provide a view of individual
PVs for OPC client applications, such as the OpcDbGateway configurator itself or e.g. SAEAUT SCADA web
client.

Memory
operand

Constant

OPC variable

By clicking is
automatically

generated OPC
variableIndex in the

PV field

Figure 2 Location of memory operands, constants and OPC variables of the internal OPC server in the configuration

http://www.saeautom.sk/
http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk
mailto:sae-automation@saeautom.sk
https://www.saeautom.sk/en/products/scada/
https://www.saeautom.sk/en/products/scada/
https://www.saeautom.sk/en/products/scada/
https://www.saeautom.sk/en/products/scada/

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

In OpcDbGateway, we implement the application by configuring a string constant that contains the word
"Hello World". We copy this constant to a process variable using a configurable SET statement. This PV
will be mapped to the OPC variable, the value of which will be displayed in the OPC client of the
configurator (Figure 3).

Constant
"Hello
World"

Process variable
Copying

using conf.
command

SET

A memory
operand that

maps a process
variable

and to which it is
possible

create OPC
variable

OPC variable

OPC client in
OpcDbGateway

configurator

Figure 3 Implementation of "Hello World" in OpcDbGateway

OpcDbGateway allows you to structure application functionality using function blocks (FBs) that can be
nested up to 15 levels.

FBs (Figure 4) contain configurable commands that perform various operations on memory operands,
database operands, constants, and user messages. These operations can be very simple e.g. addition of
the value of two PVs, or the already mentioned SET statement, more complicated e.g. executing a
configured SQL command over a process database, or calling a user program module (eg, a PID
controller) implemented in a DLL.

Cyclic (synchronous) data processing (with a configurable period) is performed in a single FB called
"Main". All FBs embedded therein are also cyclically executed (Figure 4)

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

 4).

Configurable command

Calling FB HW
from FB "Main" The SET statement copies a

constant to the PP

Figure 4 The HW function block contains a SET command that copies the HW constant to the PV. FB HW is nested in FB "Main"

and is therefore cyclically called by the CALL command

If you place a configurable SET command in FB “Main”, it will also be executed repeatedly. Since in our

case we only need to copy the constant string once, such functionality is redundant.

However, OpcDbGateway also has several options for a one-time FB call. When the runtime application

is started, the FB “Start” or “Restart” is executed once. So, if you place the SET command in FB “Start”, it

is executed only once.

FB “Start” is executed at the beginning only if a new configuration has been created or an old one

changed. FB “Restart” is performed when the application is restarted. Therefore, the question arises - is

it necessary to place the SET command in the FB "Restart"?

OpcDbGateway ensures simple persistence of data in the sense that upon the termination of the

application, the status of all PVs is stored in a database, from which it is automatically restored on

restart. Since we used the SET command to copy a constant string to the PP already in the FB “Start”, we

do not need to do this in the FB “Restart” because at the restart the state of the PV was automatically

restored.

For the sake of completeness, it should be noted that there is another FB that is executed by default

called "Stop", which is automatically called when the application is closed. What happens if we put the

SET command in FB "Stop"? When you start the application for the first time, you will see an empty

string in the OPC client. When restarting such an application, “Hello World” will already appear, because

at the previous start the PP was already set in FB “Stop”.

However, we are not finished with one-time FBs. In fact, any FBs, except the “Main” FB, can be executed

once. FBs can be initiated as "events". An event is a functionality triggered by some “trigger”. There are

several types of events (except the mentioned FB calling) in OpcDbGateway – e.g. start an external

application. Now, however, we will only deal with the FB start event.

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

The event can be activated as one of three types: event of the type time – i.e. at a defined time, of the

type value - when the selected PV has one of the selected values "true" or "false". There is also the

possibility to start the event when both conditions - defined time and defined PV value - are met.

Events also have a defined priority. If two different events are to be performed at the same time, the

order of their execution will be given by their priority.

Although periodic FB execution can be ensured in FB “Main”, a periodically triggered event can also

provide periodic FB calling. So, what is the difference between periodic functionality in "Main" and that

implemented through events? The cycle performed through "Main" starts by implicitly loading inputs

from external applications and devices, this is such that are not mediated by configurable commands,

continues to process them using the configurable commands in FB "Main" and ends with implicit

copying from PVs to outputs for external applications. Such a cycle is typically implemented in industrial

control systems (PLCs) that simulate quasi-parallel evaluation of logical expressions. In connection with

OpcDbGateway we refer to it as synchronous cycle.

Functionality in FB "Main" can be combined with so-called synchronous events, which are characterized

by the fact that the "triggering" conditions for events are always evaluated at the beginning of the

synchronous processing period. On the other hand, the "triggering" conditions for asynchronous events

are evaluated, and their corresponding events are executed (in order of priority) almost immediately as

they occur. Asynchronous events also provide either FB execution, external process/application calls or

some special operations such as create a new log file. The synchronous and asynchronous functionality

in OpcDbGateway is divided into two program threads. This ensures that the performance of

asynchronous events, even if time-consuming, does not interfere with the synchronization processing

period. Regarding the periodic triggers, it is useful to mention that it is possible to define the number of

repetitions. Execution time can be defined as absolute or relative to the start of the application.

Let's review how we create and monitor the implementation of the “Hello World” application in the

OpcDbGateway configurator:

1. Create a configuration for the new application using the command in the menu File-> New.

The first automatic configuration check is performed. (Figure 5).

2. Define a string constant named HW containing string "Hello World" (Figure 2).

3. Create a MO in a new directory called HW. MO is mapped to OPC variable with the same

name and in the directory of the internal OPC server address space (Figure 2)

4. Define the FB with the name HW, which will contain the only configurable command “SET”,

by means of which the HW constant content is copied to the PV, which is referenced by the

MO with the name HW located in the directory HW (Figure 4).

5. Run the configuration check (Figure 5).

6. Run the OPC client in the configurator (glasses icon) and the message "Hello World" will

appear in the monitoring window (Figure 6).

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

Click to
recheck
configuration

The result of
the automatic
check after
creating a new
configuration

Figure 5 Check configuration after opening and editing

In OpcDbGateway, we can monitor and influence the functionality of the configured application not only

through PVs and OPC variables that are application-specific (Figure 6), but also through system PVs that

are part of an automatically created configuration template. Part of these variables (in the “Status”

directory - Figure 7) is read-only and a part enable also allows writing. E.g. the

System.Status.AsyncQueSize variable tells you how many activated asynchronous events have not yet

been executed. By means of variables in the Control / Log directory named TimeLog and TraceLog, it is

possible, for example, to change a how much application runtime information is written to the log file at

runtime (Figure 8, Figure 9). You can change the value of a control variable by right-clicking on the

variable in the monitoring window.

Click to launch a runtime
application and open the

monitoring window

Monitoring window

Click on the directory to
display all OPC variables
from the directory in the

monitoring window

Figure 6 Monitoring of PV content via OPC variable to which it is mapped

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

Parameters affecting the
performance of the runtime

application

Current asynchronous event
queue size

Information about the status
of a runtime application

Figure 7 Monitoring and control the runtime 0pcDbGateway application. The variables in the "Control" directory serve for control
and in the "Status" directory for monitoring.

The log file display is continuously updated. You can watch it in the configurator by selecting View->

Output view-> Log Viewer in the main menu.

User logs can also be written to the log file via the configurable WRITE_MSG_TO_LOGFILE command. In

this way, we could expand our application. Simply define the user message and write it to the log file

using the configurable WRITE_MSG_TO_LOGFILE command (Figure 10). User messages need not only

contain the text, but also the MO parameters, which ensure that the current values corresponding to

the PVs are written to the log file.

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

Figure 8 Log file when TraceLog system variable is set to true. Data on the execution of individual function blocks, configurable

commands, including their arguments, is recorded

Figure 9 Log file with time data recording for individual activities (system variable TimeLog = true)

Definition of user message
written to log-file

Command to write user
message to log-file

The order numbers
determine the order in

which orders within FB will
be executed

Figure 10 Configuration extension by writing user message to log-file. The order of execution of configurable commands within

FB is given by their numbering.

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: Trenčianska 19, 018 51 Nová Dubnica

Within the FB HW in Figure 10, we now have two configurable commands - “HW to Log” with number 5

and “HW” with number 10. These numbers ensure that the execution of configurable commands is

executed in ascending order. Spacing numbering was already used with the good old BASIC language to

make it easy to insert new commands without renumbering by program enhancing.

From a comprehensive description of such a simple example, it may seem that configuring applications in

OpcDbGateway is difficult. However, the difficulty lies in the fact that we have tried to describe at least

part of the basic functionality that OpcDbGateway offers.

Using configurator auxiliary functions such as I/O mapping from various external devices and databases,

also applications with huge amounts of I/O can be configured relatively quickly. In addition,

OpcDbGateway includes several functionalities that would otherwise require separate applications.

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

