— SAE - Automation, s.r.o.

Y
I

>

UTOMATION, s.r.o.

OpcDbGateway — first steps first

SAE — Automation, s.r.o. Nova Dubnica
Interoperability for your devices and software applications

OpcDbGateway — Hello World

10pcDbGateway is a software application platform consisting of a configurator and a runtime
application. The configurator is used to create, debug and test created applications.

As in other development environments, we can try the first steps on the "Hello World" application.
Here's an analogy to creating and debugging a C ++ application:

#include <iostream>

int main()

{
auto HW = "Hello World!\n";

std::cout << HW;

Let's create a HV string variable containing "Hello World! \ N". Use the std :: cout << HV command to
send the contents of this variable to standard output. We translate the program and run the console
application.

For the creation and debugging of such a program we can use e.g. Visual Studio 2019 development
environment.

File Edit View Project Build Debug Test Anayze P ConsoleApplication] ° - o x
Tools Edensions Window Help

Heo W R + ¥ LocalWindows Debugger - | o F . I& LvaShare &

ConsoleApplicationl.cpp # X

B ConsoleApplication1 ~| (Global Scope) GE--5F o k=
& clostraans

Solution Exploser [k p-

“int main() 5 Solution ConsoleApplication" (1 project)

suto Wy = "Mella vorldI\n"; 4 ™) ConsoleApplication!

Shaw output from: Build - = | ¢
1>----— Rebuild ALl started: Project: ConsoleApplicationl, Configuration: Release Wind2 ----—- a
1>Consolenppl icationt. cpp

1>generating code

1>Previous 1PDB not found, fall back to full cospilation

15411 18 functions were compiled because no usable TPDB/TOR] from previous compilation was found.
1>Finished generating code

1>Consolenpplicationt.vexprod -> € \Usersipalacka, SAEAUTOMZ\Source\Repos \Consol eapplication1\Rel easehcon
—————————— Rebuild All: 1 succesded, © failed, @ skipped =——--mmmmmm

Hello World!

Figure 1 Creating, compiling and running "Hello World" in Visual Studio 2019

! The functionality described in this article is the same as in the SAEAUT UNIVERSAL OPC Server, except for the
database and internal OPC client functionality.

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk
mailto:sae-automation@saeautom.sk
https://www.saeautom.sk/products/uniopcserver/
https://www.saeautom.sk/products/uniopcserver/

Now let's show you how to create and test a similar application in the OpcDbGateway configurator.

Running a previous application resulted in a constant string display in the console application. However,
the runtime OpcDbGateway application is not a console application, but a server application without a
user interface that provides data to client applications or stores them in databases and files.

In Visual Studio, we have a string in the Debug Console. As a replacement for such a console, we can use
the OpcDbGateway configuration application, which also functions as a client application that
communicates via the OPC DA interface with the OPC DA server of the runtime application. OPC DA
server runtime application provides access to so-called. process variables (PVs), which can contain
variables of different types, including strings.

In typical OpcDbGateway applications, data from external devices and applications communicating with
the runtime OpcDbGateway application are stored in the PVs. The PVs are stored in an array of
structures in the runtime application's memory (which include, in addition to value, also type,
timestamp, and quality) and made available through indexes of this array (Figure 2).

When creating a configuration, we need to provide an overview of the use of individual PVs in individual
parts of the application. For this purpose, named memory operands (MOs) are used that can be created
within tree directory structures in the configurator and mapped to individual PVs in the memory of a
runtime application. We use them to create an application data model.

For each MO, it is also possible to create an OPC variable in the address structure of the address space of
the internal OPC server with a single click. OPC variables created in this way provide a view of individual
PVs for OPC client applications, such as the OpcDbGateway configurator itself or e.g. SAEAUT SCADA web
client.

Figure 2 Location of memory operands, constants and OPC variables of the internal OPC server in the configuration

OpcDbGatewayConfigurator5.0DG - OpcDbGatewayConfigurator — | X
File Edit View Go Tools Help
D@ ¢E-=-B s EeD o2
&-{&] Memory Operands P
B-C HW Memory | . m
H oW operand y
(2 System Description: |
--{E3] DB Operands | ata type: Iﬁ
=-{5] Constants Baaupe [sTRING -
-.[C] EMPTY_STRIM M dd icking i
FALSE(E] Constant emory address Map't By C||Ck|ng IS
HW I T [nat automatically
One(1) } | I Map ony tobit generated OPC
TRUE(1) Index in'the :
| [0 variable
LC] Zerol® PV field
@-{3] User Messages e digital alarm
@-(g8 Function Blocks <Not Assigneds »
=-{&] Triggers I —l—!
E]”[ﬁl Events Generate OPC Tem
=] @ Internal OPC Server
242 Address Space OPC variable
o0 HW pls | Res Add new I
d HW v v
< > >
Ready \ NUM 4

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk
mailto:sae-automation@saeautom.sk
https://www.saeautom.sk/en/products/scada/
https://www.saeautom.sk/en/products/scada/
https://www.saeautom.sk/en/products/scada/
https://www.saeautom.sk/en/products/scada/

In OpcDbGateway, we implement the application by configuring a string constant that contains the word
"Hello World". We copy this constant to a process variable using a configurable SET statement. This PV
will be mapped to the OPC variable, the value of which will be displayed in the OPC client of the
configurator (Figure 3).

Constant Copying A memory
"Hello using cont. Process variable operand that
World" SET maps a process

variable
and to which it is
possible
create OPC
variable
OPC variable
OPCclientin
OpcDbGateway

configurator

Figure 3 Implementation of "Hello World" in OpcDbGateway

OpcDbGateway allows you to structure application functionality using function blocks (FBs) that can be
nested up to 15 levels.

FBs (Figure 4) contain configurable commands that perform various operations on memory operands,
database operands, constants, and user messages. These operations can be very simple e.g. addition of
the value of two PVs, or the already mentioned SET statement, more complicated e.g. executing a
configured SQL command over a process database, or calling a user program module (eg, a PID
controller) implemented in a DLL.

Cyclic (synchronous) data processing (with a configurable period) is performed in a single FB called
"Main". All FBs embedded therein are also cyclically executed (Figure 4)

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

File

Edit View Go Tools Help

OpcDbGatewayConfigurator5.0DG - OpcDbGatewayConfigurator

D@ e-=+-E/ B

== @ | R

=]

&
<

-
=

{E] User Messages
-(@] Function Blocks

(2 System A
{Z3) DB Operands
{3 Constants

! EMPTY_STRING

| FALSE(0)

-[c) HW

[C) One())

[€) TRUE(D)

€] Zero(0)

o Hw

L@ 0HwW
BD Main
- LEhocaniw

?,-,;;':,”:”’ Calling FB HW

from FB "Main"

Ready

Name: IHW

Description: |

Line Number: | 10

Operation:

I Logical

Configurable command

UaIEUESE SIGUSIC
User messages
Generators
Matematical predictions
Others

SET

IMPULS

 Database operand (* Constant

Input 1:
€ Memory operand
|Hw

Input 2
€ Memory aperand

¢ Database operand € Constant

Output:
& Memory operand

" Database operand

Tz

v
>

The SET statement copies a
constant to the PP

4).

Figure 4 The HW function block contains a SET command that copies the HW constant to the PV. FB HW is nested in FB "Main"
and is therefore cyclically called by the CALL command

If you place a configurable SET command in FB “Main”, it will also be executed repeatedly. Since in our
case we only need to copy the constant string once, such functionality is redundant.

However, OpcDbGateway also has several options for a one-time FB call. When the runtime application
is started, the FB “Start” or “Restart” is executed once. So, if you place the SET command in FB “Start”, it
is executed only once.

FB “Start” is executed at the beginning only if a new configuration has been created or an old one
changed. FB “Restart” is performed when the application is restarted. Therefore, the question arises - is
it necessary to place the SET command in the FB "Restart"?

OpcDbGateway ensures simple persistence of data in the sense that upon the termination of the
application, the status of all PVs is stored in a database, from which it is automatically restored on
restart. Since we used the SET command to copy a constant string to the PP already in the FB “Start”, we
do not need to do this in the FB “Restart” because at the restart the state of the PV was automatically
restored.

For the sake of completeness, it should be noted that there is another FB that is executed by default
called "Stop", which is automatically called when the application is closed. What happens if we put the
SET command in FB "Stop"? When you start the application for the first time, you will see an empty
string in the OPC client. When restarting such an application, “Hello World” will already appear, because
at the previous start the PP was already set in FB “Stop”.

However, we are not finished with one-time FBs. In fact, any FBs, except the “Main” FB, can be executed
once. FBs can be initiated as "events". An event is a functionality triggered by some “trigger”. There are
several types of events (except the mentioned FB calling) in OpcDbGateway — e.g. start an external
application. Now, however, we will only deal with the FB start event.

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

The event can be activated as one of three types: event of the type time —i.e. at a defined time, of the
type value - when the selected PV has one of the selected values "true" or "false". There is also the
possibility to start the event when both conditions - defined time and defined PV value - are met.

Events also have a defined priority. If two different events are to be performed at the same time, the
order of their execution will be given by their priority.

Although periodic FB execution can be ensured in FB “Main”, a periodically triggered event can also
provide periodic FB calling. So, what is the difference between periodic functionality in "Main" and that
implemented through events? The cycle performed through "Main" starts by implicitly loading inputs
from external applications and devices, this is such that are not mediated by configurable commands,
continues to process them using the configurable commands in FB "Main" and ends with implicit
copying from PVs to outputs for external applications. Such a cycle is typically implemented in industrial
control systems (PLCs) that simulate quasi-parallel evaluation of logical expressions. In connection with
OpcDbGateway we refer to it as synchronous cycle.

Functionality in FB "Main" can be combined with so-called synchronous events, which are characterized
by the fact that the "triggering" conditions for events are always evaluated at the beginning of the
synchronous processing period. On the other hand, the "triggering" conditions for asynchronous events
are evaluated, and their corresponding events are executed (in order of priority) almost immediately as
they occur. Asynchronous events also provide either FB execution, external process/application calls or
some special operations such as create a new log file. The synchronous and asynchronous functionality
in OpcDbGateway is divided into two program threads. This ensures that the performance of
asynchronous events, even if time-consuming, does not interfere with the synchronization processing
period. Regarding the periodic triggers, it is useful to mention that it is possible to define the number of
repetitions. Execution time can be defined as absolute or relative to the start of the application.

Let's review how we create and monitor the implementation of the “Hello World” application in the
OpcDbGateway configurator:

1. Create a configuration for the new application using the command in the menu File-> New.
The first automatic configuration check is performed. (Figure 5).

2. Define a string constant named HW containing string "Hello World" (Figure 2).

3. Create a MO in a new directory called HW. MO is mapped to OPC variable with the same
name and in the directory of the internal OPC server address space (Figure 2)

4. Define the FB with the name HW, which will contain the only configurable command “SET”,
by means of which the HW constant content is copied to the PV, which is referenced by the
MO with the name HW located in the directory HW (Figure 4).

5. Run the configuration check (Figure 5).

6. Run the OPC client in the configurator (glasses icon) and the message "Hello World" will
appear in the monitoring window (Figure 6).

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

Click to

recheck
OpcDbGatewayConfigurator5.0DG - OpcDbGatewayConfigurator Configu ration
File Edit View Go Tools Help
D€ -=»-m s B EmME oD o 2]

---- {i=5) DDE Servers Nan
#-{@] External DLLs

(&) External OPC Servers

@ Process Databases

(=) Sync Controller

@ Internal OPC Server

&-{Z Alarm Handling (for Memory O

&-{@) Trends The result of)
the automatic

External DLLs ... check after

DDE Servers

DDE Items ... creating a new

113 record(s) configuration

0 error(s), O/warning|(s)

[Q) Checker |[E] Find |

Ready 0 Object(s)

Figure 5 Check configuration after opening and editing

In OpcDbGateway, we can monitor and influence the functionality of the configured application not only
through PVs and OPC variables that are application-specific (Figure 6), but also through system PVs that
are part of an automatically created configuration template. Part of these variables (in the “Status”
directory - Figure 7) is read-only and a part enable also allows writing. E.g. the
System.Status.AsyncQueSize variable tells you how many activated asynchronous events have not yet
been executed. By means of variables in the Control / Log directory named TimeLog and Tracelog, it is
possible, for example, to change a how much application runtime information is written to the log file at
runtime (Figure 8, Figure 9). You can change the value of a control variable by right-clicking on the
variable in the monitoring window.

OpcDbGatewayConfigurator5.0DG - OpcDbGatewayConfigurator - O X
File Edit View Go Tools Help Click to launch a runtime
-4 + & b | @] X . —
D@ -0 %0 e| =T application and open the | —
~[c) One(1) " IName / | Simul o ind ite 4
- [€) TRUECT) [Erw No monitoring window
~[d) zero) Click on the directory to
{& User Messages .)
Function Blocks display all OPC variables
H . . . >
&-{&] Triggers from the directory in the
{i3) Events . . .
(&) Interal OPC 5« monitoring window
18 Addres”space
o . . . te
=E= Monitoring window
o o | &
: (2 System Apply Reset I Add New |
M PR Canvareinne v
< > < >
Item ID ‘ Value _“ iimestamp | Quality Subquality Limi
M HW.HW "Hello World" {v7i_BST... 05/30/19 17:02:13.000 Good Non-specific Not
< >
OPC Server started. 1 Object(s) NUM 4

Figure 6 Monitoring of PV content via OPC variable to which it is mapped

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

File Edit View Go Tools Help
D@ -~ K
&[] Alarms A | Name / | Simulate | DataType | AccessRights Genera A
=1 Control TPLEAt a .
1 Log Hpm Parameters affecting the
[/ PicPeriod = performance of the runtime .
..[f] PlcRestart (A% A . . aadahle M~
% PicStop < application >
[Timelog - . A
[Tracelog — Information about the status
@-03 Reports of a runtime application r
=/ Status
(2 PLC Cycle v | ———— i f v
< > < >
Item ID Value Timestamp Quality Subquality LA
System.Status.AsyncQueueSize 0(VT_I12) 05/31/19 10:19:44.562 Good Non-specific M
System.Status.LocalTime 31/05/2019 1106200/ _05/21/10 110520000 Good Non-specific Ly
[¥] System.Status.PlcLastErrorDescription AT _BSTR Non-specific Ly
[¥] System.Status.PlcStatus 1 (Vi Current asynChronOUS event Nen-specific P
[¥] System.Status.PlcStatusDescription "Running” (queue size Non-specific)
System.5tatus.PlcStopReason 0(VT_I12) Nen-specific 4
System.Status.PlcStopReasonDescription " (VT_BSTR) 05/31/19 10:19:44.562 Good Non-specific My
< >
OPC Server started. 112 Object(s) NUM

Figure 7 Monitoring and control the runtime OpcDbGateway application. The variables in the "Control" directory serve for control
and in the "Status" directory for monitoring.

The log file display is continuously updated. You can watch it in the configurator by selecting View->
Output view-> Log Viewer in the main menu.

User logs can also be written to the log file via the configurable WRITE_MSG_TO_LOGFILE command. In
this way, we could expand our application. Simply define the user message and write it to the log file
using the configurable WRITE_MSG_TO_LOGFILE command (Figure 10). User messages need not only
contain the text, but also the MO parameters, which ensure that the current values corresponding to
the PVs are written to the log file.

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

Outputs = 0 .S

Log Viewer | @y Alams Viewer | [Table Query Viewer |
[Looie =]

2019-06-04 10:05:20.000 SYS_TRACE_LOG: Call FunctionBlock Name=Main ID=112 NestLevel=0 ~
2019-06-04 10:05:20.000 SYS_TRACE_LOG: 00108601 (0) LineNr=0 , CommandID=7, Operation=CALL, Function
2019-06-04 10:05:20.000 SYS_TRACE_LOG: Call FunctionBlock Name=HW ID=3 NestLevel=l

2019-06-04 10:05:20.000 SYS_TRACE_LOG: 00108601 (1) LineNr=10 , CommandID=5, Operation=SET, Inputl(T
2019-06-04 10:05:21.000 SYS_TRACE_LOG: Call FunctionBlock Name=Main ID=112 NestLevel=0

2019-06-04 10:05:21.000 SYS_TRACE_LOG: 00109601 (0) LineNr=0 , CommandID=7, Operation=CALL, Function
2019-06-04 10:05:21.000 SYS_TRACE_LOG: Call FunctionBlock Name=HW ID=3 NestLevel=l

2019-06-04 10:05:21.000 SYS_TRACE_LOG: 00109601 (1) LineNr=10 , CommandID=5, Operation=SET, Inputl(T
2019-06-04 10:05:22.000 SYS_TRACE_LOG: Call FunctionBlock Name=Main ID=112 NestLevel=0

2019-06-04 10:05:22.000 SYS_TRACE_LOG: 00110601 (0) LineNr=0 , CommandID=7, Operation=CALL, Function
2019-06-04 10:05:22.000 SYS_TRACE_LOG: Call FunctionBlock Name=HW ID=3 NestLevel=l

2019-06-04 10:05:22.000 SYS_TRACE_LOG: 00110601 (1) LineNr=10 , CommandID=S5, Operation=SET, Inputl(T
2019-06-04 10:05:23.000 SYS_TRACE_LOG: Call FunctionBlock Name=Main ID=112 NestLevel=0

2019-06-04 10:05:23.000 SYS TRACE LOG: 00111601 (0) LineNr=0 , CommandID=7, Operation=CALL, Function
2019-06-04 10:05:23.000 SYS_TRME_LOG Call FunctionBlock Name=HW ID=3 NestLevel=l

2019-06-04 10:05:23.000 SYS_TRACE_LOG: 00111601 (1) LineNr=10 , CommandID=5, Operation=SET, Inputl(T
2019-06-04 10:05:24.000 SYS_° mCE LOG: Call FunctionBlock Name=Main ID=112 NestLevel=0

2019-06-04 10:05:24.000 SYS TRACIZ LOG: 00112601 (0) LineNr=0 , CommandID=7, Operation=CALL, Function
2019-06-04 10:05:24.000 sys_mc:_r.oc Call FunctionBlock Name=HW ID=3 NestLevel=l

2019-06-04 10:05:24.000 SYS_TRACE_LOG: 00112601 (1) LineNr=10 , CommandID=5, Operation=SET, Inputl(T
2019-06-04 10:05:25.000 SYS_TRACE_LOG: Call FunctionBlock Name=Main ID=112 NestLevel=0

2019-06-04 10:05:25.000 SYS TRACE LOG: 00113601 (0) LineNr=0 , CommandID=7, Operation=CALL, Function
2019-06-04 10:05:25.000 SYS TRACE LOG: Call FunctionBlock Name=HW ID=3 NestLevel=l

2019-06-04 10:05:25.000 SYS_TRACE_LOG: 00113601 (1) LineNr=10 , CommandID=5, Operation=SET, Inputl(T
201G_NK-N4 10-N&-2& NAN &VS TRACF TNG: Call FuncrinnRlnck NamasMain Th=117 Naerlaval=n v

OP_190531_131855.log
START_130531_101344 log
STOP_130530_170213 log
START_190530_104356 log
STOP_130530_104344 log
START_130530_104336 log
STOP_130530_103353 log
START_130530_103345.log
STOP_190530_103334 log
START_190530_103308 log
STOP_190530_103243 log
START_190530_103205.log

STOP_190520_161955 log
START_190520_125346.kog
STOP_190516_184610)og
START_190516_184516.og
STOP_190516_184421 log
START_190516_184304 bog
STOP_190516_184256.og
START_190516_183450.og
STOP_190516_183416. g
START_190516_183347 kog
STOP_190516_183310)og
START 190516 182707.ka v

A

>

Figure 8 Log file when TracelLog system variable is set to true. Data on the execution of individual function blocks, configurable
commands, including their arguments, is recorded

B8 outputs - o %
[Log fie] [z 2019-06-04 10:35:23.000 SYS_TIME_LOG: FunctionBlock ID=112 Name=Main, TimeConsumption=l [ms] ~

A JJT 2019-06-04 10:35:23.000 SYS_! tml LOG: WriteOpcltems, TimeConsumption<=l1 [ms]

I 2019-06-04 10:35:23.000 SYS_TIME_LOG: PLCLOOP_END(2179) TimeConsumption<=l [ms]

STOP_190531_131855og I 2019-06-04 10:35:24.000 SYS_TIME_LOG: PLCLOOP_START (2180) LastPlcPeriod=000000999 [ms]
START_190531_101944 log I 2019-06-04 10:35:24.000 SYS_TIME_LOG: ReadOpcItems, TimeConsumption<=1 [ms]
STOP_190530_170213log I 2019-06-04 10:35:24.000 SYS_TIME_LOG: FunctionBlock ID=112 Name=Main, TimeConsumption=l [ms]
2{3’;2—;&’;"7&03‘555‘:9 I 2019-06-04 10:35:24.000 SYS_TIME_LOG: WriteOpcItems, TimeConsumption<=1 [ms]
START. 190530.1049% oo I 2019-06-04 10:35:24.000 SYS_TIME_LOG: PLCLOOP_END(2180) TimeConsumption<=l [ms]
STOP_ 790530703359 0g I 2019-06-04 10:35:25.000 SYS_TIME_LOG: PLCLOOP_START (2181) LastPlcPeriod=00000099% [ms]
START_190530_103345.log I 2019-06-04 10:35:25.000 SYS TIHI.' LOG: ReadOpcItems, TimeConsumption<=l [ms]
STOP_190530_103334.log I 2019-06-04 10:35:25.000 SYS_TIME_LOG: FunctionBlock ID=112 Name=Main, TimeConsumption=l [ms]
START_190530_103308 log I 2019-06-04 10:35:25.000 SYS_TIME_LOG: WriteOpcItems, TimeConsumption<=l [ms]
STOP_130530_103243 log I 2019-06-04 10:35:25.000 SYS_TIME LOG: PLCLOOP_END(2181) TimeConsumption<=1 [ms]
g}a‘;"—g’%’“‘—gg‘fﬁ‘:ﬂ I 2019-06-04 10:35:26.000 SYS_TIME LOG: PLCLOOP_START (2182) LastPlcPeriod=000001000 [ms]
START 190521105704 g I 2019-06-04 10:35:26.000 SYS_TIME LOG: ReadOpcItems, TimeConsumption<=l [ms]
STOP_ 790520761955 l0g I 2019-06-04 10:35:26.000 SYS_TIME LOG: FunctionBlock ID=112 Name=Main, TimeConsumption=l [ms]
START_190520_125346.log I 2019-06-04 10:35:26.000 SYS_TIME LOG: WriteOpcItems, TimeConsumption<=l [ms]
STOP_190516_184610.log I 2019-06-04 10:35:26.000 SYS_TIME LOG: PLCLOOP_END(2182) TimeConsumption<=1 [ms]
START_190516_184516 log I 2019-06-04 10:35:27.000 SYS_TIME_LOG: PLCLOOP_START (2183) LastPlcPeriod=000000999 [ms]
STOP_190516_184421.log I 2019-06-04 10:35:27.000 sxs nuz LOG: ReadOpcItems, TimeConsumption<=1l [ms]
g}eﬁ";g;ﬂ;‘“g‘b:ﬂ I 2019-06-04 10:35:27.000 SYS_TIME LOG: FunctionBlock ID=112 Name=Main, TimeConsumption=1 [ms]
START_ 190516, 183480 g I 2019-06-04 10:35:27.000 SYS_TIME_LOG: WriteOpcItems, TimeConsumption<=l [ms]
STOP_ 130516, 18341610 I 2019-06-04 10:35:27.000 SYS_TIME_LOG: PLCLOOP_END(2183) TimeConsumption<=1 [ms]
START_190516_183347 log I 2019-06-04 10:35:28.000 SYS_TIME_LOG: PLCLOOP_START (2184) LastPlcPeriod=000000999 [ms]
STOP_190516_183310.og T 201G-NF-N4 1N0-2E:98 AN SVE TTMF TNG+ Raadnin~Trama TimaCananmnrianc=1 fmal ™
START 190516 182707.loa vige 2

Figure 9 Log file with time data recording for individual activities (system variable TimelLog = true)

pcDbGatewayConfigurator5.0DG - OpcDbGatewayConfigurator — O X

File Edit View Go Tools Help
IR IR - X = Elés @] | 2|
DCESY'K - -
N Definition of user message Pl doogu
written to log-file

o — J The order numbers
(2] User Message- Line Number: [~ 5 determine the order in
B which orders within FB will

Universal Log Message Operation:
E1-{@] Function Blocks Logical [~ User message: — be executed A
HW Arlhmeh(. " Database operand ¢ Constant
5 HW do loga-— Command to write user _I
i iy
L Do) message to log-file
Database statistic e
User messages f‘ Memory operand ¢ Database operand ¢ Constant
WRITE_MSG_TO_LOGFILE I LI
WRITE_MSG_TO_TABLE
Generators -
: o Matematical predictions [Output
= :TT‘:"::M Log Message Others & Memowyoperand Database operand
; rite message -
: 2 Null log message string < > |<N"l Assigned> =]
3| 3 Null log message trigge: , v
< > < >
Ready I T

Figure 10 Configuration extension by writing user message to log-file. The order of execution of configurable commands within
FB is given by their numbering.

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

Within the FB HW in Figure 10, we now have two configurable commands - “HW to Log” with number 5
and “HW” with number 10. These numbers ensure that the execution of configurable commands is
executed in ascending order. Spacing numbering was already used with the good old BASIC language to
make it easy to insert new commands without renumbering by program enhancing.

From a comprehensive description of such a simple example, it may seem that configuring applications in
OpcDbGateway is difficult. However, the difficulty lies in the fact that we have tried to describe at least
part of the basic functionality that OpcDbGateway offers.

Using configurator auxiliary functions such as I/0 mapping from various external devices and databases,
also applications with huge amounts of 1/0 can be configured relatively quickly. In addition,
OpcDbGateway includes several functionalities that would otherwise require separate applications.

http://www.saeautom.sk, sae-automation@saeautom.sk, tel.:+421-(0)42-445 07 01, Address: TrenCianska 19, 018 51 Nova Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

