
Using standard streams of a child process
to implement plug-ins.

Vladimir Palacka, SAE ‐ Automation, s.r.o. (Slovakia). Trenčianska 19, NOVA DUBNICA 01851, email:

vladimir_palacka@saeautom.sk

Keywords:

Application development toolbox, Inter-process Communication, Communication Middleware,

Communication over pipe

Abstract:

OpcDbGateway enables to process data collected from different external processes and to write data

to them using different means of inter-process communication. This article describes possibilities and

one concrete implementation of inter-process communication based on piping of standard output of

an external process to OpcDbGateway runtime process. Ready-made or custom console applications

communicating over pipes or parameters of command line interface string can considerably enhance

configurable and/or programmed functionality of integrated applications based on OpcDbGateway.

Introduction
OpcDbGateway is application software development product consisting of IDE (GUI) for creating

and debugging applications and a runtime engine/application without IDE. The OpcDbGateway

configuring/programming methodology is alike as used in programmable logic controllers (PLC). It is

based on using of Function Blocks (FB). They consist of configurable commands. Runtime application

executes the configurable commands that are saved in configuration created by IDE. There are

different types of commands like arithmetic, logical, database, comparison, database statistic,

generating user messages. FBs can be configured in a hierarchy started with FB Main. Configuring of

applications using configurable commands does not necessary require knowledge of a programming

language. User can choose different types of commands and their operands using select boxes in

GUI.

Runtime engine provides two main modes/threads of execution - a cyclic synchronous and an

asynchronous one1. The synchronous mode provides PLC-like periodic implicit communication with

external data sources and processing data within FB Main and its nested FBs. Execution of FB Main is

repeated with defined period. Except this, there is also processing based on prioritised events

initiated by triggers of the type value or time. Event in this context means an activity that has to be

fulfilled like the start of an external program or call of FB. The trigger is a condition for executing of

an event. Event based processing can be executed either in synchronous thread where triggers that

initiate events are evaluated always only at the beginning of synchronous cycle, or in the

asynchronous thread, where they are evaluated as fast as possible. Runtime engine provides near

real-time functionality.

1 There are also special threads under the hood for evaluating of triggers and for run of very slow activities.
Other threads can also run within in-process plug-ins.

mailto:vladimir_palacka@saeautom.sk

OpcDbGateway IDE enables creating of applications functionally equivalent with PLC applications and

at the same time also as PAC (programmable automation controller) applications that are created by

standard programming languages as C++. It enables e.g. access to databases, logging and alarming

functionality and communication with external processes. An important feature of the

OpcDbGateway GUI is automatic mapping/configuring of different types of interfaces with external

processes like OPC servers/clients, DDE servers and different kinds of databases. There are also tools

for different ways of logging, historical data and alarms processing. GUI offers also checker of

configuration consistency and a graphical view of the application structure, logfiles and alarm

viewers.

A central point of OpcDbGateway runtime engine is the process image memory (PIM). It contains

process values (PV) that represent input and output data from/to external processes data points

and also data for internal processing according to the configured functionality. Every PV contain its

ID, a data value of the type VARIANT2, time stamp, quality and type of time stamp – gained from an

external process, or internal – created by the runtime engine. PVs are placed in PIM within one-

dimensional array and can be addressed using their index (ID) in the array.

PIM status is persisted in configuration database when runtime application stops. After the restart, it

is renewed and one-shot FB named Restart is called. By the first start of runtime with new or

changed configuration, another one-shot FB named Start is called instead.

Within configuration, PVs are referenced by memory operands (MO). Configurable commands use

MOs as arguments and return values3. MOs have their names, that can be chosen for usage by

configurable commands by the select box in GUI. MOs can be organised and shown in GUI in tree-like

structures of folders. It is useful for the structuring of applications’ data model. For the MO, address

that represents ID of PV and also data type that specifies basic data type within the VARIANT value of

the PV have to be configured. MOs can be used as triggering values for triggers of type value. Most

used interface used by OpcDbGateway for the inter-process communication is the OPC server’s

interface. OpcDbGateway GUI application has built-in OPC client. There is a possibility to configure

the mapping of every MO to OPC items of the runtime engine’s OPC server. Using OPC client of the

GUI offers then one of the means to monitor MOs, to write to them and to debug runtime

functionality.

OpcDbGateway runtime application can run either as out of process server started by an OPC client

(e.g. the one built into the GUI application) or as a Windows service.

Custom plug-ins and extensions
OpcDbGateway functionality can be fundamentally enhanced using plug-ins and extensions. The

enhancements can be so broad that they provide core business logic or user interface for integrated

application or it can be a implementation of an easy new configurable command.

Plug-ins and extensions can be implemented as in-process or out of process program modules. In-

process modules run in one of the threads (synchronous or asynchronous) of the runtime core or in

other threads executed within custom DLLs but remaining in the same process as the runtime core.

Out of process modules are external programs and scripts that can be invoked either by using one of

2 In fact, the VARIANT is encapsulated in CComVariant
3 There are also other types of operands e.g. constants, database operands that enables addressing of a
database table cell, table column or even whole table. There is also operand that represents configured name
of custom DLL.

the inter-process interfaces (like OPC or DDE) provided by OpcDbGateway or as programs started

using command line interface (CLI) strings parameterised with actual values of some PVs.

Plug-ins can function as a one-shot or long time running. Transfer of data between runtime and plug-

in can be provided either by input and output arguments of a function called from one of runtime

threads and implemented within plug-in or trough PVs of PIM shared by runtime core and plug-in.

To provide the functionality of custom configurable command, they need to have a C-style interface

to the runtime core application and have to have a non-blocking functionality as not to block

threads of the runtime core. The functionality of the one-shot in-process plugin can be invoked from

runtime core by configurable command CALL DLL. It provides calling of C-interface function

DoProcessIO where can be implemented most of the plug-ins’ functionality. Before calling it, the

runtime core calls C-interface function GetCountOfIO4 to find out the number of input and output

arguments for DoProcessIO. Input arguments and placeholders for output arguments has to be

placed in a continuous array of PVs. Index of the first PV of this array is used as the first input

argument of configurable command CALL DLL, and the configured name of custom DLL as the 2nd

one. Within CALL DLL, input arguments are copied from the continuous array of PVs before calling

DoProcessIO. After return from DoProcessIO, the CALL DLL writes values of output arguments to PVs.

It means that working with PVs is in this case completely provided on runtime core site. This feature

is important because it enables to build custom DLLs in a different version of development

environment as used for the runtime core.

The custom DLLs, except functionality invoked by CALL DLL configurable command, can be affected

directly through PVs. The DLLs controlled directly over PVs need to provide minimally a part of their

functionality within an individual thread that is started and eventually runs all the time parallel

with other threads of runtime core. Another possibility is using of DoProcessIO to start a new

thread, to read periodically values from that thread and also to stop it using the same function. In

such case, one of the arguments for DoProcessIO has to contain information which activity (start,

read/write or stop) have to be fulfilled within the actual call. A disadvantage of this approach is a

necessity of pooling data from the custom DLL thread by repeated calling of DoProcessIO. This

problem can be avoided by direct access to PIM from the custom DLL. It is an effective way in case

that the custom DLL can be built in the same environment like the runtime core. Unfortunately, as

we are speaking about custom DLLs, it is often not possible. This problem can be solved by out of

process plug-ins or by external applications. OpcDbGateway offers a few powerful client and server

interfaces to provide inter-process communication like OPC client plus server and DDE client. Using

them, it is possible not only to communicate with different external data sources and sinks but also

to create plug-ins for OpcDbGateway. Unfortunately, these technologies are for most users relatively

complicated. On the other hand, console applications with their standard streams STDIN, STDOUT,

STDERR are easier comprehensible, can be programmed in different programming languages and

environments and so more users can find an easy own way to implement plug-ins.

OpcDbGateway has not actually implemented interfaces over standard streams within runtime core

but it is possible to implement them within semi-custom DLL (like in Figure 1) that will be to disposal

as open source and also delivered with OpcDbGateway. In this case, it is supposed that DLL is built in

the same development environment like the runtime core and so we can use already mentioned

more effective data exchange between DLL and the runtime core using direct access to PVs in PIM.

To enhance OpcDbGateway runtime functionality by a user, it is then enough to choose a

4 It means that number inputs and outputs has to be hard coded in the custom DLL.

readymade or create an own console application. It enables even to enhance OpcDbGateway with

applications for another platform and packaged as a Docker container.

The Child process in Figure 1 can be started using CLI string either from Runtime core as a configured

event or from the DLL using programmed WINAPI function CreateProcess.

DLL

Input pipe

Child

 process Output pipe

Create / terminate process

Error pipe

STDOUT

STDERR

STDIN

Runtime

 core PIM

Input /

Output

PVs

Start DLL

thread

Runtime process

CLI string

Figure 1 Custom DLL to connect STDIN, STDOUT and STDERR to OpcDbGateway runtime5

From the DLL, the process can be also stopped using the TerminateProcess programmed function. In

both cases (from Runtime core or from DLL), the CLI string can be used as one communication input

channel from OpcDbGateway runtime to the external child process because, except application path

and eventually other parameters, it can contain parameters that can be substituted by a set of

actual PVs. This channel is useful only if it is enough to send parameters only one time by the start of

the child process. For the case that the application has to run continuously and actual PVs has to

be sent repeatedly, it is necessary to send data from the Output pipe in DLL to the applications’

STDIN. This is the 2nd input channel. There are 2 possible output channels for data from the Child

process to DLL – from STDOUT to Input pipe and from STDERR to Error pipe.

Communication using CLI, STDIN, STDOUT.
Using plug-ins implemented as console applications, it is possible to implement not only new custom

easy configurable commands and pipelined filters but also communication drivers for different

types of devices.

There are following possibilities to configure or to program communication over CLI, STDIN and

STDOUT with external processes in OpcDbGateway:

1. Outbound communication from OpcDbGateway to a data sink by periodic or one-shot start of the

console application by configurable event using command line interface string (CLI) parameterized

by actual values of PVs from PIM. This solution is described in the white paper „Connecting

OpcDbGateway to MQTT broker to monitor a home/building automation system”6 and it does not

require a custom DLL.

2. Outbound communication based on writing to the standard input of the console application. This

solution requires not only configuring but also implementing a custom DLL for OpcDbGateway

5 Horizontal flowlines denote data flows and vertical control flows.
6 http://www.saeautom.sk/download/OpcDbGatewayMQTT.pdf

runtime. It is used mainly when we need a continuous stream of output data without periodic

starting of the console application.

3. Inbound communication from the STDOUT of the console application to the OpcDbGateway

runtime, either continuous or one-shot. It always must be implemented using custom DLL. More

universal kind of inbound communication is the continuous one, and so we describe a solution for

this type of communication.

The test case (Figure 2) described within this article provides inbound and also outbound

communication between OpcDbGateway and MQTT broker.

MQTT broker
OPC DA Server

SAEAutomation.
OPCSimDA.3

OpcDbGateway

OPC
DA

client

MQTT
Pub

client

Start

MQTT
Sub

client

MOs as CLI
parameters

Custom
DLL

Unnamed
pipe

Process
Image

Memory
(PIM)

Create
Child Process

JSON
string

Figure 2 Test case - communication with MQTT broker

It combines the 1st approach where external application is started as configured event of the type

“Call External Program” invoked periodically by the trigger of the type time. This way, MQTT publish

client periodically sends messages with defined topic to MQTT broker. The messages are formatted

as JSON strings and parameterised by PVs that are actualised from simulation OPC server7, and with

the system PV containing a time stamp. The event is started on the asynchronous thread.

In the same configuration, the second part of the application is implemented. It provides receiving

of messages from MQTT broker that have the same topic as used for above described sending. For

that purpose, a continually running custom DLL is started. From the DLL, a new child process – the

MQTT subscription client is started. DLL provides reading of JSON messages from STDOUT of the

child process using unnamed pipe and saves them to defined PV. To keep this approach generic

enough, it is supposed that the JSON string is then parsed in another custom DLL.

Parameterizing of continuously running custom DLLs
Continuously running custom DLL uses data exchange with OpcDbGateway runtime core over shared

PVs. It is started just after starting runtime core and need not be activated by the configurable

7 SAEautomation OPCSimDa OPC server is delivered together with OpcDbGateway and can be used for testing.

command CALL DLL. To be able to communicate with runtime core, the indexes of shared PVs must

be known by the custom DLL. The easiest way would be to hard code them in DLL. But, it has a few

disadvantages. Firstly, it can be a problem for using the same semi-custom DLL more times in the

same application when a different placement of a set of input and output parameters for every DLL

usage is necessary. Secondly, the algorithms for automatic proposing of PV indexes for related MOs

in GUI has not information about such in DLL hard-coded indexes and so duplicity in PVs configuring

can happen. Because of this, we need to find a way to transfer information where (in which PVs) can

the semi-custom DLL find information from the applications’ configuration. It can be provided by

already mentioned configurable command CALL DLL that provides invocation of the function

DoProcessIO within custom DLL. Contrary to the standard usage of the function DoProcessIO when it

is used for implementation of one-shot functionality of the custom DLL, it provides only transfer of

configured parameters for usage by continuously running threads of the custom DLL. The thread

where the main functionality of custom DLL is executed has to wait in a loop till necessary

parameters are transferred.

Taking into account above considerations, the custom continuously running DLL for the inbound

communication can be implemented following way (Figure 3):

• Just after starting of OpcDbGateway, runtime application core calls function OnStart

implemented within DLL and by that new thread is created.

• New thread continuously runs within call back function IOThread. At the beginning, it waits

in the loop for sending of information from the OpcDbGateway runtime like e.g. a

placement of PVs for command line string for starting of the console application and the

placement of the from MQTT broker received message.

• Above mentioned parameters are transmitted by calling the DLL function DoProcessIO from

the OpcDbGateway runtime. It is configured using CALL DLL configurable command.

• After receiving parameters, the console application is started from the function IOThread

using WINAPI function CreateChildProcess. Within that, unnamed pipe for STDOUT of the

console application is created.

OpcDbGateway
runtime

Custom
DLL

Child
process

External
entity

Process 1 Process 2 Process 3

OnStart

Loop - waiting on parameters

m_bInitialisedFromDoProcessIO

DoProcessIO

Create process

OnStop

ReadFromPipe
reading loop unsolicited message

Write string to PV

TRigger PV = FALSE

TerminateProcess

x x

Trigger PV = TRUE

Figure 3 Sequential diagram receiving of unsolicited messages by OpcDbGateway runtime application from external entity
using a child process started from custom DLL

• Within IOThread, new loop with reading data from the pipe and saving them directly to PV

is started.

• Above mentioned loop can be disrupted for one of following reasons:

o OpcDbGateway runtime got request to stop and so calls the DLL interface function

OnStop,

o By calling DoProcessIO with STOP request,

o By receiving a request to stop from an external entity with that the console

application communicates.

• After receiving a kind of STOP request, the loop is interrupted and the DLL thread is stopped.

It is also important to mention how messages from child process are processed within

OpcDbGateway runtime core according to the configured functionality. The messages are coming

asynchronously and so it is necessary to inform the OpcDbGateway runtime core when new

message comes and to provide that newer message does not overwrite the older one without

noticing it. Because of this, any time when a message arrives also a PV used as a triggering value is

set to TRUE in the DLL. Within OpcDbGateway runtime core, it activates configurable trigger of the

type Value that starts a configurable event of the type Call Function Block. It is necessary to configure

a function block that provides:

• next processing of received message (e.g. call another DLL to parse JSON string),

• confirming that the message has been processed by the setting of triggering PV to FALSE.

DLL thread is waiting in loop till this confirmation comes and only then it reads new message from

the pipe. Of course, for some applications also providing a messages buffering can be necessary.

Implementation of test application
The test application is implemented using configuration MQTTPubSubExample3.odg and MS Visual

Studio C++ project of the type regular DLL dynamically linked to MFC with support for ATL. The

project was developed modifying original Example.dll sources delivered with OpcDbGateway and

converted from version for Visual Studio 2005 to Visual Studio 2017. Although testing with debug

version of the project was without a problem (except for the big size of DLL about 8 MB) the release

version was (as expected) not usable. Because of this, the project was rebuilt in the development

environment for OpcDbGateway runtime core VS2005.

The application configuration consists of two parts – the part for MQTT publish identical as

described in the above-mentioned white paper and the part for MQTT subscribe. The part of

configuration for MQTT subscribe consists of parameterization phase that is implemented within

the FB FBforCallReadStdOutChildDll8 called from one of one-shot FBs Start or Restart, and from

execution phase provided on runtime core site by the FB

FBConfirmNotificationFromReadChildStdOut called as an asynchronous event

EvCallFBNotificationFromReadChildStdoutArrived triggered by trigger of the type value

TrNotificationFromReadChildStdOutArrived that is activated by value TRUE of the PV

DataForReadChildStdOutDll/MoIndexForNewStdOutNotification.

8 In the FBforCallReadStdOutChildDll, an information about indexes of PVs that are used as an interface
between runtime core and DLL is initialized according to configured constants and by the CALL DLL
configurable command is transferred to DLL.

The parameterization phase consists of preparing data that have to be submitted to custom DLL and

of the submitting itself provided by configurable command CALL DLL that provides calling of C-

interface function DoProcessIO in the custom DLL. Memory operands for submitted data are

configured within folder DataForReadChildStdOutDll (Figure 4). When configuring this data, it is

important to provide that input data for DoProcessIO and output data are in one continuous array9.

Figure 4 Memory operands for interface between OpcDbGateway runtime and custom DLL

The functionality of the custom DLL is implemented as a status machine that is initially stopped. By

submitting of parameters from configuration and setting of the MO MoActualStatus to the value 1, it

is started. It can be also stopped again, in case that MoActualStatus is set to 2 and CALL DLL is

repeated with the same parameters. The MO MoCliString contains index of PV from that the custom

DLL can read CLI string for the child process that has to be started by DLL. The MO

MoIndexForChildStdoutString contains an index of PV where DLL will put data that are read from

STDOUT of the child process. The MoIndexForNewStdOutNotification contains an index of PV that will

be set to TRUE in case that new data from STDOUT has been read. It can be used as triggering

variable to initiate a FB for processing received data. The MoLogFromDoProcessIO can contain error

message from executing the function DoProcessIO. It is useful mainly by creating of configuration to

find out if parameters for DoProcessIO are not properly initialised.

The indexes of PV are set from configured constants. E.g. the value of MoIndexForChildStdoutString is

set by value of constant CoMoIndexForStdOutString. The CLI string for the child process is defined in

the constant ConstLIstringForReadChildStdOut.

MoActualStatus

MoCliString

MoIndexForChildStdoutString

MoIndexForNewStdOutNotification

MoLogFromDoProcessIO

CALL DLL
MoResultOfCallDllReadChildStdOut

DLL name:
ExDllReadChildStdOut

Array of
4 input

MOs
and 1

output
MO

1st MO of the
iInput/output

array

Figure 5 Parameterising custom DLL using configurable command CALL DLL

The CALL DLL (Figure 5) configurable command is called with following types of parameters:

9 The OpcDbGateway runtime is able to find numbers of input and output data that are hard coded in DLL
because it calls at the beginning the DLL C-interface function GetCountOfIO. It was necessary to do it this way
because of constant setting of 2 input parameters and one output parameter of the CALL DLL command.

CALL DLL (MO for a result of the call, Name of DLL, MO of the first PV in input/output parameters

array).

 In our case it is parameterised following way:

 CALL DLL (MoResultOfCallDllReadChildStdOut, ExDllReadChildStdOut, MoActualStatus).

The function DoProcessIO checks the validity of data in parameters array and put them in the

instance of the class CExample1App for usage within the DLL global IOThread function. There is

provided start/stop of the external console application and the loop for reading data from the

unnamed pipe. All data and methods related to working with console application are implemented

in the class ChildStdoutReader.

The DLL uses standard logging functionality of the OpcDbGateway core that is for the DLL provided

by methods of the class CLogger and within the configuration by trigger of the type value named

Universal Log Trigger that is activated by PV System/UniversalLogTrigger , by asynchronous event

named Universal Log Event that activates function block Write Universal Log Message. In this FB, the

configurable command WRITE_MESSAGE_TO_LOGFILE is called and then the PV

System/UniversalLogTrigger is set to FALSE to signalise to DLL that writing of log message has been

executed and logger is prepared for next log message. The principle for notifying and confirming log

messages from DLL to runtime is the same as for messages from the unnamed pipe.

The test environment is completed with MQTT broker that can be placed locally or in the cloud, and

by MQTT publish and subscription console applications.

Conclusions
The article describes generally how to create plug-ins for connecting an external process – console

applications with OpcDbGateway runtime core application over interface consisting of command

line, STDIN, STDOUT and STDERR.

It is also shown on example how two readymade external processes the MQTT publishing and the

MQTT subscription client can provide outbound and inbound communication to/from

OpcDbGateway runtime from/to MQTT broker. The custom DLL developed for this example can be

used also more generally for other types of external processes.

In the actual implementation, it is not possible to start more threads for different console

applications. Configuring application does not allow to configure the same DLL under different names

but It is possible to rename original DLL and to configure it under a different name.

Principally, it would be possible to start more threads within one DLL. Parametrization for all of them

would need to be done within one call of the DoProcessIO. The same function can be then used for

individual starting and stopping of different external processes.

The test application does not solve next processing of string received from standard output of the

console because it is supposed that the DLL for reading data from STDOUT is implemented as semi-

custom, it means developed in the same development environment as OpcDbGateway runtime

core and can be used generally for different processes connected through their STDOUTs and

unnamed pipes. On another hand, the DLL for next processing of received string can be developed

really as a custom DLL using different development environments.

i

i This work was supported in part by the European Commission in the scope of the project Flex4Grid (Prosumer
Flexibility Services for Smart Grid Management), grant agreement 646428 — Flex4Grid — H2020-LCE-2014-
2015/H2020-LCE-2014-3

