
Programming of
OpcDbGateway and SAEAUT
UNIVERSAL OPC Server

OpcDbGateway is universal platform enabling integration of complex or easy applications preferably

by configuring instead of more laborious programming. SAEAUT UNIVERSAL OPC Server is tool for

easy development of dedicated OPC servers. Both products use common configuring and

programming practices which are described in this document. There is also explained that it is easy to

work with them for engineers using languages according to the IEC61131-3 as well as for

programmers using languages as C++, C#.NET or Visual BASIC .NET.

Introduction

The IEC 61131-3 standard defines 5 programming languages and a software model for the

programming of control systems. OpcDbGateway and SAEAUT UNIVERSAL OPC Server can be used to

create control systems, and so there were an endeavour to enable usage of application creation

practices alike to approach described in IEC1131-3. To implement probably all tasks, easy or

complex, three of those 5 languages: FBD – Function Block Diagram, ST – structured text and SFC –

sequential function control are always sufficient. Application creation practices used in

OpcDbGateway and SAEAUT UNIVERSAL OPC Server resembles using of those three languages. There

is not exact match with FBD, ST and SFC languages because the products are supposed to be used not

only for creating of automation control systems but to integrate other types of applications as well.

This resemblance enables easy adaptation on working with OpcDbGateway those who are used to

work with above mentioned languages.

OpcDbGateway enables using either to configure or to program different tasks within function

blocks. To program Function blocks content, to the ST equivalent approach using different higher

level universal programming languages as C++, C# , Visual Basic .NET can be used. SFC can be

implemented using triggers of the type value representing actual status together with associated

function blocks providing to the actual status related actions and transition to a next status.

User can choose implementing of an application (1) by using configuring (for easy applications), (2)

by using of programming or (3) by combination of both methods (for complex applications).

OpcDbGateway provides also the functionality of the communication middleware enabling access to

data from different data sources as devices, databases, files, e-mails, SMS. It provides data exchange

between different data sources using shared memory called Project Image Memory (PIM) containing

Memory Operands (MO) which are able to contain different non-structured data types.1. Data

exchange is provided by copying of data from MO associated with one data source to another data

source.

1
 To exchange structured data types, an array of MO can be used

SAE – Automation, s.r.o.,

Nová Dubnica

Solid And Effective partner for development of

your products and industry automation.

http://www.opcfoundation.org/Products/CompanyDetails.aspx?CM=1&RI=597&CU=38

Running of programs in OpcDbGateway is event-driven. Events are triggered by triggers. Events have

defined priority. There is synchronous and asynchronous processing of tasks. Synchronous Tasks are

triggered by special implicit periodical trigger and processed by way typical for programmable

logical controllers (PLC). At the beginning of every synchronous cycle, data from different external

data sources are (1) read implicitly (without need to program or configure this reading), (2)

processed according to the configured or programmed functionality, (3) written implicitly to external

data sources. Within every synchronous period one implicit Function block – Main which has the

lowest priority is processed. Other function blocks within synchronous processing can be either (1)

called2 from the function block Main or (2) started as events by triggers and executed always with

higher priority.3

Asynchronous processing lacks this implicit reading/writing from/to external data sources. Working

with external data sources must be explicitly programmed. As this implicit reading/writing can be

time consuming, asynchronous processing with selective reading and writing from/to external data

sources can be faster.

 Triggers are either of the type time (using cyclical or one shot timers) or of the type value (if a value

of a MO changes from FALSE to TRUE an event is initiated). Asynchronous events are also put to the

ordered priority front if cannot be processed immediately. Contrary to synchronous processing, the

evaluation of priority front is not synchronised by the special implicit periodical trigger. 4

COMMAND CALL

FB MOTOR

FB MAIN

COMMAND CALL

FB MOTOR

Input 2

Condition

FB Name =Motor

Input data for FB Motor

Other input dat for FB
Machine

Output data for FB MOTOR

COMMAND AND
Input 1

Output 1

Command

Command

Command

Command

Command

Command

Trigger

VALUE1

Synchronous Event

CALL FB

FB ARM1

Other output data for FB
Machine

Other input data for FB
Main

Synchronous cycle

Trigger

TIME1

Synchronous Event

CALL FB

FB ARM2

Trigger

TIME2

Asynchronous Event

CALL FB

FB ARM3

Asynchronous

activity

Other output data for FB
Main

Data flow

C
o

n
tro

l flo
w

Figure 1 Cyclical processing of function block MAIN, synchronised processing of synchronous events and asynchronous
processing of asynchronous events

2
 conditionally or unconditionally

3
 The synchronous events put to the priority front in previous synchronous are processed in next period. This is

the reason why the Main function block has the lowest priority.
4
 In fact, as triggers can be cyclical, also this way, it is possible to provide periodic calling of tasks. But

synchronous processing provides also some implicit functionality related to external data sources.

Within Figure 1, it is possible to see that function block MAIN is called cyclically. Control flow in the

function block MAIN is provided by configurable commands. Every command can have maximally 2

inputs and maximally 1 output. Special command CALL enables calling of nested function blocks.

(Functional block MOTOR in the Figure 1 is called from the function block MAIN using command

CALL). Function blocks can be called also within events which are started by triggers. There can be

events synchronised within synchronous cycle like event where FB ARM1 is processed or

asynchronous like event where FB ARM3 is processed. One trigger can start one or more events.

There are also special function blocks Start, Restart and End (not shown in Figure 1) which are

processed only one time at the starting or ending of OpcDbGateway runtime application and that are

not started by triggers.

Sequential function control (SFC) with status automats can be implemented using triggers of the

type value. Every status has associated one MO used as triggering variable. For every status, one

Function block providing actions which have to be done in given step and second Function block

providing evaluation of transition conditions to a next status is connected.

Configuring and programming of function blocks

Function blocks can be either

configured using built-in

configurable commands (Figure 2)

or programmed using different

programming languages. The

programmed function blocks can be

added as part of configurable

functionality for later usage.

Engineers used to configure PLC’s

with languages described in

IEC61131-3 can use approach alike

as in languages FB, ST and SFC, on

the other hand, programmers can

reduce using of configured

functionality on minimum and to

program almost all functionality in

languages as C++, C# and Visual

Basic.NET... Both groups can take

advantage of the fact that

OpcDbGateway is in the same time a

middleware for easy access to

different data sources.

In this paragraph, both approaches configuring and programming of function blocks is described.

Function blocks can be created as sequences of configurable commands. Some commands provide

easy functionality which can be described mathematically by arithmetic or logical functions as shown

in the Figure 3 A). Some of them provide more complex functionality as for example writing of

parameterised message to log file or to database. But, all those types have maximally two inputs and

Figure 2 Categorization of commands with used inputs and
outputs

one output. Categorization of

commands with possible inputs and

outputs is in the Figure 2. Except of

already mentioned MO, also

database operands enabling direct

working with cells, records and

columns in database tables can be

used as inputs/outputs. Some inputs

as name of the enhancing DLL or a

name of the function block are read

directly from configuration database

of the OpcDbGateway. Constants

that have been put to the

configuration can be used as inputs

as well.

Using C-language, commands can be

described as functions with the void

return value (Figure 3A). Arguments

of the function are over given as

references on memory operands

(MO). Result of command is saved

also to a MO5. MO can be perceived

as array of global variables. They are

accessible from configurable

functionality as well as from

programmed functionality of the

OpcDbGateway. Because of this,

they can be used to provide

interface between those two parts6.

As shown in the Figure 3B), MO can

be configured, it means, a symbolical

name as well as a memory address -

an index in the array of memory

operands7. When configuring

commands, output, and inputs can

be chosen in the OpcDbGateway

configurator according to their

symbolical names. In the Figure 3B),

memory operands with the

5
 MO’s itself are saved as variables of the type VARIANT which can carry many different data types. Using of

just this data type was chosen to facilitate working with different data sources.
6
 MO with indexes 0-100 are reserved as interface to the internal functionality of the OpcDbGateway. They can

be used for monitoring of this functionality within user programs or from outside.
7
 This index can be used to access data within a programmed functionality.

AND(M302, M300, M301) M302
M405

OR(M203, M300, M301) M203

M300

M301

(1)

10

FB A1

Data flow

C
o

n
tro

l flo
w

I1

I3

I2

O2

(2)

15

Figure 4 Function block A1 providing computation: O2 = (I1 OR I2)
AND I3

.

.

.

.

FNC(M203, M300, M301)

Description in C language

void FNC(VARIANT* R, VARIANT* I1, VARIANT* I2)

R – memory operand MO or database operand DO

I11, 12 – MO or DO, or constanta C

Mathematical description

Rval= FNC(I1val, I2val)

M203

M300

M301

Data flow

I1

A)

B)

I2

 R

Figure 3 A) Command descriptions and using, B) Command
configuring

symbolical name M300 and M301 (configured in the directory commands_example are used as

inputs for the command ADD, and MO with the name R as command result or output operand. There

is configured also line number for a command. Function blocks can be configured as a sequence of

commands. Processing sequence of commands within a function block is given just by line numbers

which are ordered from lowest number to the highest one.

In the Figure 4, within FB A1, an evaluation of the logical expression O2 = (I1 OR I2) AND I3 is

executed. There is the command OR with the line number 10 processed as the first and then the

command AND with the line number 158 as the second. As shown in the Figure 3 B), memory

operands are firmly associated with inputs and outputs of the commands, and so also with inputs,

outputs and intermediate data of a FB. The function block instance is in this case constituted by

steady set of commands and also memory operands. To provide reusability of the FB for different

data sets, it would be necessary to provide setting up data to memory operands associated with

inputs (M300, M301, M405) before calling the FB A2 and to overtake output from output MO M302.

Except of this, it is necessary to evaluate risks related to parallel running of more instances of the

same instance of the FB9.

Alike way as in the Figure 4, it is possible and useful to describe the whole application when

preparing its design. Data flows are drawn always from left to the right and control flows down

from top. Commands are nested in function blocks and function blocks called from another function

blocks using commands CALL all CALL REV can be either nested in those commands, as shown in the

Figure 1, or drawn directly in the higher level function blocks to make drawing more synoptical.

Function blocks processed within asynchronous or synchronous event CallFunctionBlock should be

drawn as in the Figure 1. Drawing should be created hierarchically. In the drawing of higher

hierarchical level, it is not necessary to draw boxes for all commands nested in function blocks. It is

enough to draw only input and output data of the function blocks.

Except of function blocks configured using built-in commands, also function blocks programmed

within enhancing DLL by user (Figure 5) can be included to the configuration. They can become a

part of configurable functionality, and can be called from other function blocks using the command:

 CALL DLL(Result, DLL Name, index of the 1st input operand).

The first input of that is the name of DLL saved in configuration file and the second the index of the

MO in the MO array where sub array of inputs and outputs of the programmed function block

begins.

8
 Gaps in line numbering can be used by editing of configuration to be able to put additional commands to the

FB configuration easily
9
 As will be shown later, it can be solved using programmed FB.

OpcDbGateway

Runtime

CALL DLL

(Output,

DLL name,

Index of the 1.st

Input operand)

Enhancing DLL

DoProcessIO

(*lpInputs,

 wInCnt,

*pOutputs,

wOutCnt)

FB Input 1

Input 2

Input n

Output 1

Output 2

Output m

Figure 5 Using of Function block implemented within enhanced DLL

Alike as function blocks created using built-in commands, they can be drawn as rectangles with

inputs and outputs. But, there is one important difference in terms of functionality. Contrary to the

FB created using configurable commands and using global variables - MO’s also for intermediate

results, the programmed function blocks use internal local variables for intermediate results.

Programmed FB’s use MO’s only for inputs and outputs of the FB. Programmed function blocks have

better reusability comparing to configured ones because input and output data are not configured

firmly. This set can be changed easily by changing of Input 2 by the calling command CALL DLL to

point on another set of input and output variables. Because of this, we can speak in this case about

function block types, instead of function blocks.

Integration of applications by programming

In the previous paragraph, it was explained how to use enhancing DLL’s to implement custom

function blocks and to use them in configured application. Within this paragraph, it will be shown

how to use enhancing DLL to integrate an application almost completely by programming. Why

almost completely? OpcDbGateway is used in integrated applications as middleware to interface

different data sources. Data from those data sources must be mapped to MO’s to use them in

integrated application. These MO’s and the mapping of external data to them is configured. All other

functionality of the integrated application can be programmed within enhancing DLL.

This functionality can be provided within individual thread started together with other parts of the

OpcDbGateway. Communication between this thread and other parts of the OpcDbGateway can be

synchronized over shared MO’s as shown in the Figure 6. Instead of calling the function

DoProcessIO() from OpcDbGateway runtime only when a related function block implemented in

enhancing DLL have to be used, the functionality implemented in enhancing DLL is still alive.

This functional mode is very useful e.g. to implement a communication driver for a device notably if it

can be supposed that device will be able to send notifications captured by the communication driver.

OpcDbGateway

Runtime

Enhancing DLL

Figure 6 Cooperating of OpcDbGateway with enhancing DLL trough shared memory operands (without configured
command CAL DLL)

It is also optimal to implement dedicated OPC server for the device using the SAEAUT UNIVERSAL

OPC Server. The device driver running in enhancing DLL put items from the device to the MO’s that

are mapped to the address space of SAEAUT UNIVERSAL OPC Server.

Another useful application can be implementing of status machine (which can be described using

SFC). The status machine can use MO’s as status flags. These flags can be used as triggering variables

for events calling executive or transition function blocks.

Using interfacing MO’s, the enhancing DLL can use also other rich functionality of the OpcDbGateway

as e.g. alarming and logging system, writing data to databases, sending SMS, e-mails, connection to

SOA systems… This way, it is possible to create applications by optimal combination of configured

and programmed functionality.

Conclusions

OpcDbGateway enables easily implement control and monitoring systems using approach alike as

described in IEC61131-3, and so it is well usable by automation engineers used to work with PLC’s.

On the other hand, it can be used by software engineers and programmers used to work with high

level universal programming languages and object oriented design to create e.g. business process

management applications.

Because of used communication technologies and standards as web services, OPC, database drivers,

e-mailing, SMS messaging it enables to transfer, process and aggregate so real time data from plant

floor as aggregated data on higher levels of enterprise hierarchy.

The unlimited possibility to enhance it with new communication standards and modules enables to

keep it to be still the state of the art product.

© 2012 SAE - Automation, s.r.o.

All rights reserved.

Distribution and/or reproduction of this document or parts thereof in any form is permitted
solely with the written permission of the SAE - Automation company. The technical data

contained herein have been provided solely for informational purposes and are not legally

binding. Subject to change, technical or otherwise. www.saeautom.sk, sae-automation@saeautom.sk,

tel.:+421-(0)42-445 07 01, fax:+421-(0)42-445 07 02,

Adresa: Trenčianska 19, 018 51 Nová Dubnica

http://www.saeautom.sk/
mailto:sae-automation@saeautom.sk

