
Connecting OpcDbGateway to MQTT
broker to monitor a home / building
automation system.

Vladimir Palacka

SAE ‐ Automation, s.r.o. (Slovakia). Trenčianska 19, NOVA DUBNICA 01851, email:

vladimir_palacka@saeautom.sk

Abstract
The topic of the paper is connecting home/building automation system over OPC client /server to

MQTT broker using software OpcDbGateway providing configurable data exchange and processing

between different data sources using event of the type “start external application”. The external

console application is parameterised by values of memory operands to that data points from different

data sources are mapped. This method can be used not only for MQTT but also for outbound

communication to other data targets e.g. with REST interface in IoT and IIoT applications. Main

advantage is easy configuring of message payloads – none programming for that is needed.

Introduction
MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple and lightweight

messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable

networks. The design principles are to minimise network bandwidth and device resource requirements

whilst also attempting to ensure reliability and some degree of assurance of delivery. These principles

also turn out to make the protocol ideal of the “machine-to-machine” (M2M) or “Internet of Things”

world of connected devices, and for mobile applications where bandwidth and battery power are at a

premium1. Security is supported in V3.1 of the protocol by passing user name and password with an MQTT

packet. Encryption across the network can be handled with SSL, independently of the MQTT protocol itself.

TCP/IP port 1883 is reserved with IANA for use with MQTT. TCP/IP port 8883 is also registered, for

using MQTT over SSL. MQTT v3.1.1 is an OASIS Standard.

MQTT communication can be used to transfer data trough firewalls. Data from a home / building

automation system can be published from home to MQTT broker placed in cloud. Different client

applications can subscribe for data relevant to them and to be notified when data are changed.

A commonly used way of connecting home / building automation system is OPC DA /UA standard. A

communication hub that has an OPC DA client can connect different types of home automation

systems because commercial OPC servers are on the market for most of them. OpcDbGateway2 is such

hub and it has also many different functionalities for subsequent processing of collected data gained

from OPC DA client or a few other interfaces.

1 http://mqtt.org/faq
2 http://www.saeautom.sk/sk/products/opcdbgateway/, OpcDbGateway and SAEAUT Universal OPC Server
User's guide - http://www.saeautom.sk/download/help/opcdbgateway_en.pdf

mailto:vladimir_palacka@saeautom.sk
http://www.iana.org/
http://www.saeautom.sk/sk/products/opcdbgateway/
http://www.saeautom.sk/download/help/opcdbgateway_en.pdf

Configuring data transfer from HAS /BAS to MQTT broker.

MQTT broker

Home /
Buildimg

Automation
System

OPC
DA

Server

OpcDbGateway
OPC
DA

client

MQTT
Pub

client

Start

PC with
Windows OS

Cloud

MQTT
Sub

ClientMQTT
Sub

ClientMQTT
Sub

Client

Figure 1 Communication chain to transfer data from Home/Building Automation system to MQTT Broker

The product OpcDbGateway consists of 2 applications for Windows operating systems – a runtime

application (RA) and a configuring application (CA). The main functionality of RA is transferring data

from/to different sources to /from internal memory area of RA named Process Image Memory (PIM).

The data in this part of memory are variables with defined data types, quality and timestamps that

are named memory operands (MO). OpcDbGateway transfers data between different MOs and this

this way enables mutual connection different external data sources / destinations.

Trigger

Event
MQTTPUb

Memory
operands

to that
data

points
from Sim
OPC DA

server are
mapped

Starting of RA

Parametering
of started
external

application

Binding of
memory

operands to
parameters

Figure 2 Configuring event to start external application using OpcDbGateway CA

In complicated integrated applications number of data points from different sources can be very high. To work effectively, it
is necessary to have CA enabling easy mapping of data points to MO. Most commercial OPC servers are configured using own
CA. OpcDbGateway CA uses a browsing interface of OPC to map information about data points from commercial OPC
servers’ configuration for automatic configuring of data points / MO mapping.

There are two ways in OpcDbGateway to connect with MQTT broker:

 using its own MQTT client enhancing software module for OpcDbGateway,

 using a console external MQTT client application.

Within this paper the second possibility is described. We will use a known MQTT product called

Mosquito3.

OpcDbGateway enables execution by CA configurable events that are started according configurable

triggers. A trigger is a condition (of the type TIME, VALUE or TIME & VALUE) to execute an event. One

of the configurable event types is starting of external program. This feature enables easy and effective

way of creating / integrating applications that are often used in Linux. It is based on the linking of

console applications through standard input /output. These applications can be started from a shell

script or command line with different command line parameters, to put data to the stdout and to pipe

them through stdin to a next application. Because of the possibility to start external applications using

configurable commands that are parameterised by names of MOs, this kind of application integration

can be provided also by Windows OS application OpcDbGateway4. In our case, it will start console

application mosquitto_pub - an MQTT version 3.1/3.1.1 client for publishing simple messages. It will

publish just a single message on a topic and exit. Using periodic trigger to start the event can be

provided continuous stream of messages.

The configurable command for publishing to MQTT broker can contain application name with path and

command line parameters of the application itself e. g.:

C:\Program Files (x86)\mosquitto\mosquitto_pub.exe -h sae33 -t topic2 -m"ttt mmm"

where:

-h or --host - the host to connect to. Defaults to localhost.

-t or --topic - the MQTT topic on which to publish the message.

-m or --message – the published message

Instead of -m also -f can be used to publish a message contained in a file.

In case that message or other parameters contain spaces, they have to be in quotation marks. Special

characters have to be preceded with backslash.

Mostly we do not want to transfer repeatedly the same message as in previous example. Instead, we

want to publish actual data from a home automation system to MQTT broker. Because of this, we

need to parameterize the configurable command with names of MO (to that data points are mapped)

and from that actual values will be extracted by every execution of mosquitto_pub.exe. Let’s suppose

that we want to transfer message with JSON payload containing one variable for timestamp and

another for value of power used by a device like this:

3 https://mosquitto.org/man/mosquitto_pub-1.html
4 However, there can be a problem with catching of stdout for using by MOs in OpcDbGateway RA which can be
solved by means that are not described in this article.

https://mosquitto.org/man/mosquitto_pub-1.html

We can try to test it using own configuration5 for OpcDbGateway CA and to use following command

for that

C:\Program Files (x86)\mosquitto\mosquitto_pub.exe %1% "{\"timestamp\": %2%,

\"power\": %3%}"

A) Configuring const. string for parameter %1%

B) Initializing MO Pub1 by constant Pub1 using cpmmand SET in
function block START

D) Receiving data from MQTT broker using mosquitto?sub.exe

C) Configuring trigger for
periodic activation every 10

sec.

Figure 3 Configuring constant, function block START, trigger and watching running application using mosquitto_sub.

By executing, the parameter %1% is substituted by constant string -h sae33 -t topic2 that is by

initialization (within functional blocks START and RESTART) moved from configurable constant with

name Pub1 to MO with the same name, the parameter %2% is substituted by system time from MO

named PlcSystemTime and %3% is substituted from MO named type Double. Of course, when creating

a test application, the naming of variables is up to you. The testing configuration can also be prepared

and tested without a commercial OPC server for a home automation system as the principle of

configuration / mapping of data points to MO is very similar to using with OpcDbGateway delivered

simulation OPC server SAEAutomation.OPCSimDA.3.

The preparation of test configuration consists of following steps (please see details to every step in

OpcDbGatway documentation):

1. Create new configuration (see User's guide)

2. Create new External OPC server using SAEAutomation.OPCSimDA.3 (see User's guide)

3. Create new OPC group (see User's guide)

4. Make automatic mapping of OPC items from SAEAutomation.OPCSimDA.3 (see User's guide)

5. Create new periodic trigger (with period e.g. 10 s - Figure 3 C)

5 OpcDbgateway configuration for the example can be downloaded from
http://home.gts.sk/saeautomation//examples/OpcToMqtt/Pub_pokus1.ODG

http://home.gts.sk/saeautomation/examples/OpcToMqtt/Pub_pokus1.ODG

6. Crete a constant with the type "string" with content -h sae33 -t topic2 (Figure 3)

7. Within function blocks START and RESTART make initialization of a MO with constant from step

6 using configurable command SET (Figure 3 B).

8. Create new event of the type Start external application which will use trigger from the step 5,

command C:\Program Files (x86)\mosquitto\mosquitto_pub.exe %1% "{\"timestamp\":

%2%, \"power\": %3%}" and MOs for actualising parameters %1%, %2% and %3% (Figure 2).

9. Start OpcDbGateway RA from OpcDbGateway CA using icon with glasses (Figure 2).i

10. To watch running application start MQTT subscription client in console using command

"C:\Program Files (x86)\mosquitto\mosquitto_sub.exe" -h sae33 -t topic2 (Figure 3 D)

11. In case of problems see the view of OPC client in OpcDbGateway CA and view with log files.

Conclusions
The paper explains by example how can be easily provided and configured outbound communication

from OpcDbGateway using a specific external communication driver. Within that, data coming to

OpcDbGateway PIM from other data sources can be transferred using communication drivers

implemented as external console applications. It uses feature of the communication driver that

destination as well as message payload can be defined within command line parameters of the

communication driver itself. These parameters can be set within the 2nd level of parameterisation –

from OpcDbGateway. OpcDbGateway parameters contain names of MOs. Actual values of MOs have

to be properly set and transfer as part of command line parameter for message payload and so to be

delivered to the destination. In this case, we can just configure (not program) variable communication

payloads.

In case that we want to use alike method using event for starting of external communication driver for

inbound communication (from source to MOs), we need to find a way to get data from external

communication driver process to OpcDbGateway RA process. We can do it e.g. by piping of data from

stdout trough named pipe to OpcDbGateway RA. However, in this case we need specific enhancing

software module (DLL) for implementing of the named pipes. It is more complicated to implement it

for variable types of message payloads comparing with outbound communication in case that we want

completely avoid programming and use only configuring.

i
 This work was supported in part by the European Commission in the scope of the project Flex4Grid (Prosumer
Flexibility Services for Smart Grid Management), grant agreement 646428 — Flex4Grid — H2020-LCE-2014-
2015/H2020-LCE-2014-3

